

Page 1 of 45

Summer Cart
SOAP API and Synchronization Guide

Page 2 of 45

Overview
This guide gives a practical tutorial and a reference section with full details on how to work with

the Summer Cart SOAP API and specifically on how to synchronize the data from your custom

data management software with your Summer Cart-based web store. The guide lists SOAP API

usage best practices and provides troubleshooting tips for the most common issues you might

encounter. Finally, the How Do I section gives quick answers to common questions.

Prerequisites
Before you begin, make sure you have the following prerequisites in place:

 A working Summer Cart installation;

 An active Sync API account – see the “How Do I?” section for more information on how

to create an API account;

 Any development environment that allows you to work with web services.

Page 3 of 45

Contents
Overview ... 2

Prerequisites ... 2

Contents .. 3

SOAP API Overview ... 4

Synchronization Overview .. 5

SOAP API Reference .. 8

Methods Overview ... 8

Authentication .. 10

The getSync Method ... 10

Sync Transactions.. 11

The modify Method .. 13

The get Method .. 14

Synchronizing Orders .. 15

Data Types Reference ... 17

Data Types Overview .. 17

Manufacturers .. 19

Categories ... 20

Customers ... 21

Customer Addresses ... 22

Product Classes ... 24

Product Class Attributes ... 25

Product Class Attributes Values .. 26

Products .. 27

Product Images ... 29

Product Attributes Values ... 31

Bundle Products .. 32

Local Option Groups ... 33

Local Options .. 34

Orders ... 36

Order Lines .. 40

Order Total Lines ... 42

Best Practices .. 43

How Do I... ... 44

Create an API account in Summer Cart?... 44

Page 4 of 45

SOAP API Overview
The Summer Cart SOAP API allows you to search and manage the data in your Summer Cart

store. The API works as a standard web service, so you can use it with any development

platform that supports web services. There are many scenarios when this can be useful:

 Access Summer Cart data for reporting purposes. In the addition to the many built-in

Summer Cart reports available from your admin area, you can use the SOAP API to

access your products, orders, and other business information to produce any reports

you may need.

 Synchronize data from your business management system with your web store. If you

are using any type of business management system, you can easily synchronize your

products and other information with your web store, so no need to enter anything by

hand.

 Create data dynamically. For example, if you use your Summer Cart site only to process

payments, dynamic products can be created in your system on-the-fly, and added to the

user’s shopping cart for checkout.

Page 5 of 45

Synchronization Overview
Any system that is given a valid Summer Cart Sync API account (one you create through the

Admin area, see the “How Do I” section) can manage the content of the web store through our

convenient platform- and technology-independent SOAP API interface.

The first step in the synchronization process is to determine what data needs to be

synchronized. Typically you would have certain items in your data management system (e.g.

manufacturers, customers, products) and certain items in your Summer Cart store that were

imported with a previous synchronization. (Obviously, the first time you synchronize with

Summer Cart you would probably have an empty store.) For each one of your items there are 4

possible scenarios when it comes to synchronization:

 The item was not changed. This means that the item was imported with a previous

synchronization and was not changed ever since. No action should be performed.

 The item is missing in Summer Cart. This means the item was not yet imported into

Summer Cart, so it should be imported with the next synchronization.

 The item is missing from your system, but present in Summer Cart. This could either

mean that the item was imported into Summer Cart with a previous synchronization,

and then deleted from your system, or it was created directly in Summer Cart and does

not exist in your system. Based on the type of item you may want to either delete the

item from Summer Cart or insert the item into your system.

 The item is present in Summer Cart, but is not the same as in your system. This means

the item was imported into Summer Cart with a previous synchronization, but was then

modified either by your system or by Summer Cart. You may either want to update the

item in Summer Cart from the copy in your system or vice versa depending on your

scenario.

You can see these scenarios illustrated in the diagram on the next page. The diagram shows

what operations you need to perform in order to synchronize the products from your system

with the products in Summer Cart.

Page 6 of 45

Fortunately Summer Cart will figure out all these operations for you! The only thing you

have to do is to pass the data you have in your system, and Summer Cart will compare it

with the data in its own database and tell you what operations you should perform to sync

each item. However, as your system may contain a large amount of data, and each item

may have many properties, it would be ineffective if you had to send to Summer Cart your

entire items. Instead, you send only two properties of each item: its ID (any unique string

identifier generated by your system) and a hash code (any string generated by your system

that would change if any of the properties of an item change). Then what Summer Cart does

is to compare these ID’s and hash codes to what it already has in its database. So:

 If an ID exists in your system, but is missing from Summer Cart, then the item should

be inserted in Summer Cart;

 If an ID exists in Summer Cart, but is missing from your system, the item should be

deleted from Summer Cart (or, alternatively, inserted in your system);

 If an ID exists in both your system and Summer Cart, but hash code does not match,

the item should be updated in Summer Cart;

 If an ID exists in both your system and Summer Cart, and hash code matches, then

no action should be performed as the item is already synchronized.

Page 7 of 45

Note that when an item is modified by Summer Cart, its hash code is cleared. This way you can

tell if an item was modified by your system (both hash codes are not blank) or by Summer Cart

(Summer Cart hash code is blank).

Once you know what operations you should do to get your store in sync, it’s time for action. For

each of the items that you want to insert, update or delete from Summer Cart, you should send

an operation request containing the operation you want to perform (e.g. insert, update, delete)

and the corresponding data item. Summer Cart will return a response for each operation letting

you know if there were any problems, such as incorrect or invalid data from your system.

Page 8 of 45

SOAP API Reference

Methods Overview

Two are the SOAP API methods that are most important for synchronization: getSync and

modify. Call getSync with the ID’s and hash codes of the items you want to synchronize, and it

will return the operations you should perform to synchronize your items with Summer Cart.

Then send a request to modify with these operations and they will be applied to your store.

Following is an outline of the entire process. On the next page you can find the same illustrated

with a diagram.

1. Read the data you want to synchronize from your data source. You may want to

synchronize your data all in once, or you might want to synchronize in several steps, for

example first synchronizing your manufacturers, then your product classes, then your

products, and so on.

2. For each of your data items, calculate a hash code. What we suggest is that you do an

MD5 of a string that is produced through concatenation of all the properties of an item,

but you are free to use any other method you want. Just keep in mind that the point of

using a hash code is so Summer Cart is able to easily tell if any of the properties of an

item were changed (and thus the item should be updated), so your hash code

calculation MUST be based on all the properties of your items.

3. Call the getSync method, passing ID’s and hash codes of items you want to synchronize.

Note that whatever items you want to synchronize (e.g. products), you should send ALL

the items of this type to the service in a single method call. This is so the service knows

all your items and can figure out which items are present in Summer Cart, but missing

from your system (and thus should be deleted from Summer Cart). Fortunately ID’s and

hash codes are very small speaking of byte size, so you can send many thousands of

records and not worry about message, script or memory size limits. The service will

compare the ID’s and hash codes of your items to what it has in its own database from

previous synchronizations, and return a list of operations (Insert, Update or Delete) that

should be performed with your items to get your store in sync.

4. Call the modify method, passing operations suggested by getSync with their respective

data items from your system.

Page 9 of 45

5. The service will return a list of results for each of your modify operations. You would

typically want to display or log eventual problems, which in most cases will be due to

incorrect or invalid data passed from your system.

Page 10 of 45

The address of your Summer Cart synchronization service typically is:

http://www.yourwebsiteaddress.com/api/soap/v1/Service.php

(Here, replace www.yourwebsiteaddress.com with the actual address of your website.)

If you add “?wsdl” at the end of the service URL address, you will see the WSDL definition of the

service. For example: http://www.yourwebsiteaddress.com/api/soap/v1/Service.php?wsdl

Authentication

Before you use any of the methods of the synchronization service, you need to authenticate

your application. With every service request you should include a scSoapApiRequestHeader

that has two properties:

 Username – your Sync API account username;

 Password – your Sync API account password.

The getSync Method

Call getSync with the ID’s and hash codes of the items in your system. Note that you should

send all the items of the same type with a single method call, but you are not required to send

all item types at once. For example, you could call getSync with all your categories, and then call

it again with all your products. But you can’t call it with half your categories, and then again

with the other half. The service should know all your items of a certain type in order to figure

out if there are items that are present in Summer Cart, but missing from your system, and thus

should be deleted in Summer Cart as well. The method returns a list of operations (Insert,

Update, Delete) and their corresponding data items (specified by ID and hash code), so you

know to send those items through the modify method.

Here is an example in pseudo code showing synchronization of categories:

scSoapApiRequestHeader header = CreateRequestHeader();

scSoapApiSyncRequest request = new scSoapApiSyncRequest();

scSoapApiSyncResponse response;

// Load the categories from your data source

Category[] categories = DataSource.GetCategories();

// Prepare your getSync request

foreach(Category category in categories)

{

 scSoapApiCategorySyncInfo syncInfo = new scSoapApiCategorySyncInfo();

 syncInfo.CategorySyncId = category.Id;

Page 11 of 45

 syncInfo.HashCode = category.GetHashCode();

 request.CategorySyncInfo.Add(syncInfo);

}

// Set ReturnNotSynced to true to return items that were created directly

// in Summer Cart (not imported from your system and thus not synced)

request.ReturnNotSynced = false;

service.getSync(header, request, out response);

foreach (scSoapApiCategorySyncInfoResult result in

response.CategorySyncInfoResult)

{

 // In each result Summer Cart returns the Id and HashCode of your item,

 // as well as what operation should be performed with the item.

 // You should mark your items accordingly so you can later build

 // your modify() request.

}

Each item has two ID’s – an ID sent from your system (any string that uniquely identifies the

item within your system) and an ID created in Summer Cart (an integer value that uniquely

identifies the item within Summer Cart). The Summer Cart ID is called “Id”, as in “CategoryId”,

while the ID from your system is called “SyncId”, as in “CategorySyncId”. Note that not each

item result from getSync will contain a Summer Cart ID as an item may not be imported yet and

thus do not have a Summer Cart ID. Alternatively, an item may not have a SyncId if the item

was created in Summer Cart directly and not imported from your system.

Sync Transactions

One limitation of the getSync method is that it requires you to send all the items of the same

type in one service call. This may cause problems if you have a large number of items of the

same type (e.g. 50,000 products in your store), as you will need to modify maximum script and

message sizes.

Summer Cart supports one alternative to the getSync method that does the same thing, but

using a transaction, so you can add a large amount of items on multiple service calls.

Here’s how it works:

1. Start a transaction using the startSyncTransaction method. It returns a unique

transaction ID.

Page 12 of 45

2. Call the addSyncInfo method as many times as you need, passing your sync items. This

method is much similar to the getSync method as to what you send (your sync items),

but it does not return any results.

3. When you’re done adding sync items, call the performSyncTransaction method. This

would make Summer Cart to perform the transaction. Note that if you don’t call the

performSyncTransaction method over 60 minutes after your last addSyncInfo request,

the transaction would be automatically deleted.

4. Finally, get the transaction results using the getSyncTransactionResults method. It

returns the same type of results that the getSync method returns.

Here is an example in pseudo code that shows synchronization of products using transactions.

scSoapApiRequestHeader header = CreateRequestHeader();

int syncTransactionId;

// Load the products from your data source

Product[] products = DataSource.GetProducts();

{

 // Start transaction

 scSoapApiRequestHeader header = CreateRequestHeader();

 scSoapApiStartSyncTransactionRequest request = new scSoap…Request();

 scSoapApiStartSyncTransactionResponse response;

 service.startSyncTransaction(header, request, out response);

 syncTransactionId = response.SyncTransactionId;

}

{

 // Prepare your sync requests

 scSoapApiAddSyncInfoRequest request = new scSoapApiAddSyncInfoRequest();

 request.SyncTransactionId = syncTransactionId;

 foreach (Product product in products)

 {

 scSoapApiCategorySyncInfo syncInfo = new scSoapApiCategorySyncInfo();

 syncInfo.CategorySyncId = product.Id;

 syncInfo.HashCode = product.GetHashCode();

 request.ProductSyncInfo.Add(syncInfo);

 }

 // Split your request into multiple parts

 scSoapApiAddSyncInfoRequest[] requests = SplitRequest(request);

 scSoapApiAddSyncInfoResponse response;

 // Add the requests to the transaction

 for (int i = 0; i < requests.Length; i++)

 {

 requests[i].SyncTransactionId = syncTransactionId;

Page 13 of 45

 service.addSyncInfo(header, requests[i], out response);

 }

}

int resultPages;

{

 // Perform the transaction

 scSoapApiPerformSyncTransactionRequest request = new scSoapApi…Request();

 request.SyncTransactionId = syncTransactionId;

 request.ReturnNonSynced = false;

 scSoapApiPerformSyncTransactionResponse response;

 service.performSyncTransaction(header, request, out response);

 // Get the number of operations and split them into pages of any size

 resultPages = response.OperationsCount / 1000;

}

for (int page = 1; page <= resultPages; page++)

{

 // For each page with results, get the actual results

 scSoapApiGetSyncTransactionResultsRequest request = new scSoap…Request();

 request.SyncTransactionId = syncTransactionId;

 request.OperationsPerPage = 1000;

 request.PageNumber = page;

 scSoapApiGetSyncTransactionResultsResponse response;

 service.getSyncTransactionResults(header, request, out response);

 // Apply the results to your catalog

 ApplySyncResponse(catalog, response);

 // In each result Summer Cart returns the Id and HashCode of your item,

 // as well as what operation should be performed with the item.

 // You should mark your items accordingly so you can later build

 // your modify() request.

}

The modify Method

Once you know what items you should send to Summer Cart for synchronization (they are

returned by getSync you should send them through the modify method. It will perform the

requested operations in a single transaction and return a list of results for each operation. You

would typically want to display or log eventual problems, which in most cases will be due to

incorrect or invalid data passed from your system.

Here is an example in pseudo code:

// We are using the getSync response from the previous example

scSoapApiSyncResponse getSyncResponse;

Page 14 of 45

scSoapApiRequestHeader header = CreateRequestHeader();

scSoapApiModifyRequest request = new scSoapApiModifyRequest();

scSoapApiModifyResponse response;

foreach (scSoapApiCategorySyncInfoResult result in

getSyncResponse.CategorySyncInfoResult)

{

 scSoapApiCategoryOperation operation = new scSoapApiCategoryOperation();

 operation.Operation = result.Operation;

 operation.Category = FindCategoryById(result.CategorySyncId);

 request.CategoryOperation.Add(operation);

}

service.modify(header, request, out response);

foreach (scSoapApiCategoryOperationResult result in

response.CategoryOperationResult)

{

 // Log or display modify results.

 // result.CategoryId - The ID of the category in Summer Cart

 // result.CategorySyncId - The ID of the category as sent from your system

 // result.Operation - The operation that should be performed with the item

 // result.OperationStatusCode - SUCCESS or EXCEPTION

 // result.OperationStatusMessage – Exception message if OperationStatusCode

 // is EXCEPTION

}

The get Method

The get method allows you to select items by their Summer Cart ID. This is useful not only for

synchronization, but in many other scenarios, for example in reporting. With a single method

call you can select items of different types (e.g. categories, customers, products) using multiple

data selectors. Each selector is a simple array of integers specifying ID’s of items to return. You

can also search for items based on their references to other items. For example, products have

ProductClassId, which links to their product class. You can easily find all the products in a

certain product class by specifying the ProductClassId in your product selector.

Here is an example in pseudo code that returns some categories and products:

scSoapApiRequestHeader header = CreateRequestHeader();

scSoapApiGetRequest request = new scSoapApiGetRequest();

scSoapApiGetResponse response;

request.CategorySelector = new int[] { 1, 8, 13, 44 };

request.ProductSelector = new int[] { 5, 7, 10, 12, 15 };

service.get(header, request, out response);

foreach (scSoapApiCategory category in response.Category)

Page 15 of 45

{

 // Do something with returned categories

}

foreach (scSoapApiProduct product in response.Product)

{

 // Do something with returned products

}

Synchronizing Orders

Orders, unlike other business data types, are not imported from your system to Summer Cart,

but created in Summer Cart and then, if you need to, imported into your system. The only field

you can update on Summer Cart orders is the status field. For this reason orders don’t have

SyncInfo and are not handled by the getSync method. They are, however, updatable through

the modify method, but only in regards to their status.

The synchronization process for orders is as follows:

1. Call the getOperationsLog method. It will return the operations log (a list of operations

performed) for orders. For example, if only one order was placed in Summer Cart, which

was then updated 3 times in the admin area, getOperationsLog will return 4 operations

– one insert and 3 updates – referencing this order by ID.

2. Call the get method with all the different Order ID’s returned by getOperationsLog.

3. Insert the orders that are new, update the orders that were modified in Summer Cart;

4. Call the markOperationsLogSynced method with the operations you have performed in

your database (mark them synced) so Summer Cart does not send them again.

The following example in pseudo code illustrates the process:

scSoapApiRequestHeader header = CreateRequestHeader();

int[] orderIds;

{

 // Call the getOperationsLog method

 scSoapApiGetOperationsLogRequest request = new scSoapApi…Request();

 request.GetOrderOperations = true;

 scSoapApiOperationsLogOrder[] response;

 service.getOperationsLog(header, request, out response);

 // Read the distinct order ID's from the response

 orderIds = GetDistinctOrderIds(response);

}

Page 16 of 45

scSoapApiOrder[] orders;

{

 // Call the get method with the order ID's we have from getOperationsLog

 scSoapApiGetRequest request = new scSoapApiGetRequest();

 request.OrderSelector = orderIds;

 scSoapApiGetResponse response;

 service.get(header, request, out response);

 // Read the orders from the response

 orders = response.Order;

}

// Insert/update orders in your database

scSoapApiOperationsLogSyncedOrder[] results = DataSource.SaveOrders(orders);

{

 // Finally tell Summer Cart that you have processed the operations

 scSoapApiOperationsLogSyncedOrder[] request = results;

 scSoapApiMarkOperationsLogSyncedResponse response;

 service.markOperationsLogSynced(header, request, out response);

}

Summer Cart Synchronization Guide

Page 17 of 45

Data Types Reference

Data Types Overview

This section explains in detail the different types of data you might want to synchronize with

your Summer Cart web store. When you sync your items you would want to do it in the same

order as this section lists them. For example, as products have categories, you would want to

first synchronize your categories, and then your products.

There are several things that are common across different data types:

 All data types have a property of type scSoapAXxxSyncInfo (e.g. manufacturers have

property ManufacturerSyncInfo of type scSoapApiManufacturerSyncInfo) that holds the

ID of the data item in your system, and also the HashCode created by your system.

 All data types have two separate ID’s, one generated from your system and one created

by Summer Cart. The Summer Cart ID is typically called XxxId (e.g. ManufacturerId),

while the ID from your system is called XxxSyncId and is found in the XxxSyncInfo

property (e.g. ManufacturerSyncInfo has a property called ManufacturerSyncId).

 All data types have a property called XxxCustomData (e.g. ManufacturerCustomData),

which under normal conditions is ignored by the synchronization service. This property

will typically be used to hold custom data if you are using a customized synchronization

service that extends the standard Summer Cart functionality.

 Some data types, such as manufacturers, categories and products, have properties of

type scSoapApiMultilanguageText[]. Unlike regular strings, these properties can hold

values in several different languages all at once. Each scSoapApiMultilanguageText has a

value (a regular string) and a property called “lang”, which specifies the language of the

value, e.g. “en”, “bg”, etc.

 Some data types, such as manufacturers, categories and products, have properties of

type scSoapApiImage. This represents an image that can be either specified by an URI (in

this case Summer Cart will download and resize the image) or by the image content (raw

bytes) directly. If you are referencing an image by URI, fill the scSoapApiImage.ImageUri

property. If you are referencing an image by its raw content bytes, encode them in

Base64 and fill the scSoapApiImage.ImageEncoded property. Do not fill both properties

at the same time.

Summer Cart Synchronization Guide

Page 18 of 45

 Data types that reference other data types, such as products referencing their product

classes, have properties of type scSoapApiXxxKey (e.g. scSoapApiProductClassKey) that

allow you to reference an item by your system’s ID (in this case ProductClassSyncId) or

the Summer Cart’s ID (in this case ProductClassId). There will be scenarios where you

only know the ID of an item in Summer Cart (such as with items that still exist in

Summer Cart, but were deleted from your system), and there will be other scenarios

where you only know the ID of an item in your system (such as with items not yet

imported into Summer Cart). Remember that only one of the two must be set for a key,

otherwise Summer Cart will throw an exception.

 Unless otherwise stated, all strings can be up to 255 characters long, integers are 32 bit

unsigned, and decimals are (10,2).

Summer Cart Synchronization Guide

Page 19 of 45

Manufacturers

These are the manufacturers of your products. Each of your products may or may not have an

associated manufacturer.

Class scSoapApiManufacturer

Property Description

ManufacturerId
Nullable Int

The ID of the manufacturer in Summer Cart

ManufacturerSyncInfo
scSoapApiManufacturerSyncInfo

Contains ManufacturerSyncId (the ID of the manufacturer in
your system) and HashCode (a hash code created by your
system)

ManufacturerName
scSoapApiMultilanguageText[]

The name of the manufacturer

ManufacturerDescription
scSoapApiMultilanguageText[]

Description of the manufacturer

ManufacturerImage
scSoapApiImage

Optional image of the manufacturer

ManufacturerSort
Int (optional)

Specifies a sort index. In Summer Cart manufacturers will be
sorted by this index in ascending order

ManufacturerCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 20 of 45

Categories

Categories can be organized into a hierarchical structure. Each product is assigned a category,

and end-users may browse products by categories.

Class scSoapApiCategory

Property Description

CategoryId
Nullable Int

The ID of the category in Summer Cart

CategorySyncInfo
scSoapApiCategorySyncInfo

Contains CategorySyncId (the ID of the Category in your
system) and HashCode (a hash code created by your system)

CategoryParentKey
scSoapApiCategoryKey

The ID of the parent category if this is not a root category

CategoryName
scSoapApiMultilanguageText[]

The name of the category

CategoryDescription
scSoapApiMultilanguageText[]

Description of the category

CategoryImage
scSoapApiImage

Optional image of the category

CategorySort
Nullable int

Specifies a sort index. In Summer Cart categories will be
sorted by this index in ascending order

CategoryCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 21 of 45

Customers

The customers of your web store. They can either register directly from the web store, or be

imported from your business system. Each customer may have one or more physical addresses.

Note that the email of a customer is a unique string and a primary key in Summer Cart. If you

have a customer with certain email address in your system and a different customer with the

same email address already registered in Summer Cart, when you send the ID and hash code of

your customer Summer Cart will ask you to insert it, however insert will then fail because the

email address is already in use. So when inserting customers, search for their email addresses in

Summer Cart first (use the get method with a selector by email) and if any of the customers is

found, change the insert operation to an update operation.

Class scSoapApiCustomer

Property Description

CustomerId
Nullable Int

The ID of the customer in Summer Cart

CustomerSyncInfo
scSoapApiCustomerSyncInfo

Contains CustomerSyncId (the ID of the Customer in your
system) and HashCode (a hash code created by your system)

CustomerGroupId
Nullable int

The ID of the customer’s group in Summer Cart. Optional.

CustomerReferrerKey
scSoapApiCustomerKey

The ID of the customer’s referrer customer. Optional.

CustomerEmail
String

The email of the customer. Must be a unique string.

CustomerPassword
String

The password of the customer’s Summer Cart account.
Passwords are not returned by the web service. You can
modify them with an update operation.

CustomerPoints
Int

The points that might have been earned by the customer.
Points are returned from the web service, but you can’t
modify them with an update operation.

CustomerStatus
scSoapApiCustomerStatus

The status of the customer, ACTIVE or DISABLED.

CustomerCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 22 of 45

Customer Addresses

Represents an address of a customer. Each customer may have one or more addresses, with

different identities (first name, last name, company, etc.) on each address. One of the

addresses must be marked as default for billing, and one as default for shipping (these can be

the same address).

Class scSoapApiCustomerAddress

Property Description

CustomerAddressId
Nullable Int

The ID of the customer address in Summer Cart

CustomerAddressSyncInfo
scSoapApiCustomerAddressSyncInfo

Contains CustomerAddressSyncId (the ID of the
customer address in your system) and HashCode (a hash
code created by your system)

CustomerKey
scSoapApiCustomerKey

The ID of the customer

CustomerAddressFirstName
String

The first name of the customer on this address.

CustomerAddressLastName
String

The last name of the customer on this address.

CustomerAddressPhone
String

The phone of the customer on this address.

CustomerAddressFax
String

The fax of the customer on this address.

CustomerAddressCompany
String

The company of the customer on this address.

CustomerAddressLine1
String

The first line of the address.

CustomerAddressLine2
String

The second line of the address.

CustomerAddressCity
String

The city of the customer address.

Summer Cart Synchronization Guide

Page 23 of 45

CustomerAddressStateCode
String

The state code of the customer address.

CustomerAddressStateName
String

The state name of the customer address. State names
are returned by the web service, but should not be
modified (set the state code instead).

CustomerAddressCountryCode
String

The ISO 3166-1 Alpha2 country code of the customer
address.

CustomerAddressCountryName
String

The country name of the customer address. Country
names are returned by the web service, but should not
be modified (set the country code instead).

CustomerAddressVatNumber
String

The VAT number of the customer on this address.

CustomerAddressIsDefaultBilling
Boolean

Specifies whether this is the default billing address.

CustomerAddressIsDefaultShipping
Boolean

Specifies whether this is the default shipping address.

CustomerAddressCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 24 of 45

Product Classes

Each product in Summer Cart must be associated with a product class. Any custom product

attributes you define in your Summer Cart admin area are defined within a product class and

then inherited by any product of this class. For example, as all hard drives have attributes such

as Volume, Interface (SATA/PATA) and RPM, you may create a product class called Hard Drives

and define these 3 attributes there. Then you can have many products of this product class, and

they all will have these 3 attributes inherited from the product class.

Class scSoapApiProductClass

Property Description

ProductClassId
Nullable Int

The ID of the product class in Summer Cart

ProductClassSyncInfo
scSoapApiProductClassSyncInfo

Contains ProductClassSyncId (the ID of the product class in
your system) and HashCode (a hash code created by your
system)

ProductClassName
scSoapApiMultilanguageText[]

The name of the product class

ProductClassSort
Nullable int

Specifies a sort index. In Summer Cart product classes will be
sorted by this index in ascending order

ProductClassCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 25 of 45

Product Class Attributes

Each product class contains one or more attributes, and all products linked to that product class

inherit these attributes.

Class scSoapApiProductClassAttribute

Property Description

ProductClassAttributeId
Nullable Int

The ID of the attribute in Summer Cart

ProductClassAttributeSyncInfo
scSoapApiProductClassAttributeSyncInfo

Contains ProductClassAttributeSyncId (the ID of the
attribute in your system) and HashCode (a hash
code created by your system)

ProductClassKey
scSoapApiProductClassKey

The ID of the parent product class

ProductClassAttributeName
scSoapApiMultilanguageText[]

The name of the attribute

ProductClassAttributeType
Nullable
scSoapApiProductClassAttributeType

The type of the attribute. One of TEXT (regular text
attribute), SELECT (attribute where the user selects
one of several given options) and MULTIPLE_SELECT
(attribute where the user selects one or more of
several given options). Default is TEXT.

ProductClassAttributeValidator
Nullable
scSoapApiProductClassAttributeValidator

An optional validator for the attribute if it is of type
TEXT. One of NONE (no validation) or NUMBER (text
must be numeric). Default is NONE.

ProductClassAttributeUnitName
String

An optional value that specifies in what unit you
measure the value of the attribute. For example
“m”, “l”, “kg” etc.

ProductClassAttributeSort
Nullable int

Specifies a sort index. In Summer Cart attributes will
be sorted by this index in ascending order

ProductClassAttributeCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 26 of 45

Product Class Attributes Values

Attributes of types SELECT and MULTIPLE_SELECT have a list of accepted values, and these

values are referred to as Product Class Attributes values.

Class scSoapApiProductClassAttributeValue

Property Description

ProductClassAttributeValueId
Nullable Int

The ID of the attribute value in Summer Cart

ProductClassAttributeValueSyncInfo
scSoapApiProductClassAttributeValueSyncInfo

Contains ProductClassAttributeValueSyncId (the
ID of the attribute value in your system) and
HashCode (a hash code created by your system)

ProductClassAttributeKey
scSoapApiProductClassAttributeKey

The ID of the parent attribute

ProductClassAttributeValueML
scSoapApiMultilanguageText[]

The attribute value display text

ProductClassAttributeValueSort
Nullable int

Specifies a sort index. In Summer Cart attribute
values will be sorted by this index in ascending
order

ProductClassAttributeValueCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 27 of 45

Products

These are the products you sell in your web store. Each product falls into a certain category and

certain product class, and has a number of built-in properties, such as code, name, price, weight

and quantity. In addition, you can define various custom attributes and place them into product

classes, so similar products can be put within the same product class and thus inherit the same

attributes.

Class scSoapApiProduct

Property Description

ProductId
Nullable Int

The ID of the product in Summer Cart

ProductSyncInfo
scSoapApiProductSyncInfo

Contains ProductSyncId (the ID of the attribute in
your system) and HashCode (a hash code created by
your system)

CategoryKey
scSoapApiCategoryKey

The ID of the category this product belongs to

ManufacturerKey
scSoapApiManufacturerKey

The ID of the product manufacturer

ProductClassKey
scSoapApiProductClassKey

The ID of the product class this product belongs to

ProductCode
String

The code of the product. Must be a unique string.

ProductCreatedTimestamp
Nullable DateTime

The date and time the product was created. You can
specify any value in this field, and it does not
necessarily need to match the actual date and time
the product was created in your system. For
example, you way want to specify a different date so
the products appears as “New!” in the web store

ProductName
scSoapApiMultilanguageText[]

The name of the product

ProductDescription
scSoapApiMultilanguageText[]

Description of the product

Summer Cart Synchronization Guide

Page 28 of 45

ProductDetailedDescription
scSoapApiMultilanguageText[]

Detailed description of the product. Long text up to
65536 chars

ProductPrice
Nullable Decimal

The price of the product

ProductWeight
Nullable Decimal

The weight of the product

ProductQuantity
Nullable Int

The quantity of the product you have in stock

ProductIsActive
Nullable Boolean

Specifies whether the product is active and thus
visible in your web store

ProductPageTitle
scSoapApiMultilanguageText[]

Text to be used as page title (and thus browser
window title) when a user opens the details of the
product. If not specified, the name of the product
will be used

ProductMetaKeywords
scSoapApiMultilanguageText[]

Meta keywords about the product

ProductMetaDescription
scSoapApiMultilanguageText[]

Meta description of the product

ProductCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 29 of 45

Product Images

Each product in your web store may have one or more images. Each image has many versions:

regular image, full size image, thumbnail image, etc. These versions are generated

automatically by Summer Cart – you only supply your original image.

Class scSoapApiProductImage

Property Description

ProductImageId
Nullable Int

The ID of the product image in Summer Cart

ProductImageSyncInfo
scSoapApiProductImageSyncInfo

Contains ProductImageSyncId (the ID of the image in
your system) and HashCode (a hash code created by
your system)

ProductKey
scSoapApiProductKey

The ID of the product

ProductImageOriginal
scSoapApiImage

The original image version. This is the only version
you can set, and all the other versions are generated
by Summer Cart automatically from it.

ProductImage
scSoapApiImage

Standard image version used for example in the
product details page. Generated automatically by
Summer Cart when you set ProductImageOriginal.

ProductImageLarge
scSoapApiImage

Large image version used for example if you click the
product image on the details page. Generated
automatically by Summer Cart when you set
ProductImageOriginal.

ProductImageThumb
scSoapApiImage

Thumbnail image version used where thumbnails of
products are displayed. Generated automatically by
Summer Cart when you set ProductImageOriginal.

ProductImageBox
scSoapApiImage

Box image version used on boxes and panels.
Generated automatically by Summer Cart when you
set ProductImageOriginal.

ProductImageIsDefault
Boolean

Specifies whether this is the default (primary) image
of the product.

ProductImageSort
Nullable int

Specifies a sort index. In Summer Cart images will be
sorted by this index in ascending order

Summer Cart Synchronization Guide

Page 30 of 45

ProductImageCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 31 of 45

Product Attributes Values

These are the actual values for the attributes a product have inherited from its product class.

Class scSoapApiProductAttributeValue

Property Description

ProductAttributeValueId
Nullable Int

The ID of the product attribute value in Summer
Cart

ProductAttributeValueSyncInfo
scSoapApiProductAttributeValueSyncInfo

Contains ProductAttributeValueSyncId (the ID of the
attribute in your system) and HashCode (a hash
code created by your system)

ProductKey
scSoapApiProductKey

The ID of the product for which the value is defined

ProductClassAttributeKey
scSoapApiProductClassAttributeKey

The ID of the attribute for which the value is defined

ProductAttributeValue
scSoapApiProductAttributeValueChoice

The actual value for of the specified attribute for the
specified product.
scSoapApiProductAttributeValueChoice itself has 4
properties, and only one of them can be set for any
given product attribute value:

- ProductAttributeValueText is used for regular
TEXT attributes;

- ProductAttributeValueML is used for attributes
where the text can be in multiple languages;

- ProductClassAttributeValueKey is used for
SELECT attributes, where an attribute has a list of
accepted values (see Product Class Attributes
Values) and the user must select one value;

- ProductClassAttributeMultiValueKey is used for
MULTIPLE_SELECT attributes where an attribute
has a list of accepted values and the user may
select multiple values.

ProductAttributeCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 32 of 45

Bundle Products

A product in Summer Cart that contains one or more sub-products is called a Bundle. These are

regular products having one or more scSoapApiBundleProduct entries associated with them

that specify their child products.

Class scSoapApiBundleProduct

Property Description

BundleProductId
Nullable Int

The ID of the bundle product in Summer Cart

BundleProductSyncInfo
scSoapApiBundleProductSyncInfo

Contains BundleProductSyncId (the ID of the bundle
product in your system) and HashCode (a hash code
created by your system)

ProductKey
scSoapApiProductKey

The ID of the parent product

SubProductKey
scSoapApiProductKey

The ID of the child product

BundleProductQuantity
Nullable int

The quantity of the child product contained in the
parent product

BundleProductSort
Nullable int

Specifies a sort index. In Summer Cart the child
products of a bundle will be sorted by this index in
ascending order

BundleProductCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 33 of 45

Local Option Groups

Some products may have several variations based on some attribute. For example, a customer

buying shoes will typically be required to specify a shoe size, and this may or may not affect the

price of the product. In this case the Shoe Size is the local option group, and individual shoe

sizes are the local options associated with the group.

Class scSoapApiLocalOptionGroup

Property Description

LocalOptionGroupId
Nullable Int

The ID of the local option group in Summer Cart

LocalOptionGroupSyncInfo
scSoapApiLocalOptionGroupSyncInfo

Contains LocalOptionGroupSyncId (the ID of the
local option group in your system) and HashCode (a
hash code created by your system)

ProductKey
scSoapApiProductKey

The ID of the associated product

LocalOptionGroupName
scSoapApiMultilanguageText[]

The name of the local option group

LocalOptionGroupType
scSoapApiLocalOptionGroupType

The type of the local option group:
- PRICE_MODIFIER for options that affect the

price of the product;
- USER_IMAGE for products where the user is

asked to upload one or more image (each local
option within the group specifies one image that
may be uploaded);

- USER_TEXT for products where the user is asked
to type some text (each local option within the
group represents a textbox);

- VARIANT for options that do not affect the price
of the product.

LocalOptionGroupSort
Nullable int

Specifies a sort index. In Summer Cart the local
option groups within a product will be sorted by this
index in ascending order

LocalOptionGroupCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 34 of 45

Local Options

Some products may have several variations based on some attribute. For example, a customer

buying shoes will typically be required to specify a shoe size, and this may or may not affect the

price of the product. In this case the Shoe Size is the local option group, and individual shoe

sizes are the local options associated with the group.

Class scSoapApiLocalOption

Property Description

LocalOptionId
Nullable Int

The ID of the local option in Summer Cart

LocalOptionSyncInfo
scSoapApiLocalOptionSyncInfo

Contains LocalOptionSyncId (the ID of the local
option in your system) and HashCode (a hash code
created by your system)

LocalOptionGroupKey
scSoapApiLocalOptionGroupKey

The ID of the parent group

LocalOptionName
scSoapApiMultilanguageText[]

The name of the local option

LocalOptionPriceModType
scSoapApiLocalOptionPriceModType

The modifier type of the local option:
- NONE for options that are not in a

PRICE_MODIFIER groups;
- AMOUNT for options in PRICE_MODIFIER groups

that affect the price of the product by a fixed
amount;

- PERCENT for options in PRICE_MODIFIER groups
that affect the price of the product by a fixed
percent;

LocalOptionPriceModValue
Nullable decimal

If the modifier type is AMOUNT or PERCENT, here
you specify the actual modifier value. If the modifier
type is NONE, a NULL value must be used.

LocalOptionRequired
Boolean

Specifies whether the user is required to enter a
value for the local option. This is used only for
options in USER_IMAGE or USER_TEXT groups.

LocalOptionSort
Nullable int

Specifies a sort index. In Summer Cart the local
options within a group will be sorted by this index in
ascending order

Summer Cart Synchronization Guide

Page 35 of 45

LocalOptionCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 36 of 45

Orders

Orders placed by customers on your web store. As opposed to most other types of business

data, these are synchronized from Summer Cart to your system. An order may contain one or

more order lines (referencing products) and total lines (with summaries), which, again unlike

most other types of business data, are passed to and from the service as part of the order itself.

Class scSoapApiOrder

Property Description

OrderId
Nullable Int

The ID of the order in Summer Cart

OrderStatusId
Int

The ID of the order status. Summer Cart has a
number of predefined order statuses that cannot be
deleted, and the user is allowed to define more
statuses that are specific to his web store. Typically
an application needs to only handle the predefined
statuses. These are:

- Unfinished (1)
The order is not yet finished

- Payment Failed (2)
The payment of the order failed

- Payment Pending (3)
The order was placed and processed by the
operator, but not yet paid

- New (4)
The order was placed by the customer, but not
yet processed

- In Progress (5)
The order is being processed by the operator

- Cancelled (6)
The order was cancelled

- On Hold (7)
The order is on hold

- Delivered (8)
The order was delivered

- Returned (9)
The order was returned by the customer

- Queued (10)
The order was queued for later processing

Summer Cart Synchronization Guide

Page 37 of 45

OrderTimestamp
DateTime

The date and time the order was placed

OrderPaymentStatus
scSoapApiOrderPaymentStatus

The payment status of the order:
- PAYMENT_STATUS_NONE

No payment has been made
- PAYMENT_STATUS_AT_PROCESSOR

We are waiting for the payment processor
- PAYMENT_STATUS_DECLINED
 Payment was declined
- PAYMENT_STATUS_PENDING
 Received payment pending from processor
- PAYMENT_STATUS_AUTH
 Received authorization confirmation from

processor
- PAYMENT_STATUS_CAPTURE
 Received capture confirmation from processor
- PAYMENT_STATUS_PARTIAL_REFUND
 Payment partially refunded
- PAYMENT_STATUS_REFUND
 Payment refunded
- PAYMENT_STATUS_CHARGEBACK
 Payment charged back
- PAYMENT_STATUS_OTHER
 Unknown payment status received from

processor
- PAYMENT_STATUS_OFFLINE
 The payment will happen offline
- PAYMENT_STATUS_PARTIAL_CAPTURE
 Some of the amount has been captured
- PAYMENT_STATUS_VOID
 Payment voided

OrderCustomerInstructions
String

Instructions given by the customer

OrderCustomerEmail
String

The email of the customer

OrderShippingTrackingNo
String

Shipping tracking number, if one is available

OrderShippingModuleName
String

The name of the shipping module

Summer Cart Synchronization Guide

Page 38 of 45

OrderShippingMethodName
String

The name of the shipping method

OrderPaymentModuleName
String

The name of the payment module

OrderPaymentModuleIntegration
String

The name of the payment module integration

OrderPaymentTransactionNo
String

Payment transaction number

OrderCheckoutModuleName
String

The name of the checkout module

OrderCouponCode
String

Coupon code if one is used

OrderTotal
Decimal

The total amount of the order

OrderCurrencyCode
String

The code of the currency used

OrderCustomerCurrencyTotal
Decimal

The total amount of the order in the currency used
by the customer

OrderCustomerCurrencyCode
String

The code of the currency used by the customer

OrderTotalPayAmount
Decimal

Total amount to be paid for the order

OrderTotalPayCurrencyCode
String

The code of the total pay amount currency

OrderBillingAddress
scSoapApiOrderAddress

The billing address of the customer

OrderShippingAddress
scSoapApiOrderAddress

The shipping address of the customer

OrderItems
scSoapApiOrderItem[]

The items of the order

Summer Cart Synchronization Guide

Page 39 of 45

OrderTotalLines
scSoapApiOrderTotalLine[]

The total lines of the order

OrderCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 40 of 45

Order Lines

Lines of orders that represent an ordered product with its quantity.

Class scSoapApiOrderItem

Property Description

OrderItemId
Nullable Int

The ID of the order item in Summer Cart

OrderItemPrice
Decimal

The unit price of the product in the store currency

OrderItemCustomerCurrencyPrice
Decimal

The unit price of the product in the currency
selected by the customer

OrderItemQty
Int

The quantity of the ordered products

OrderItemTotal
Decimal

The total price of the ordered products in the store
currency

OrderItemCustomerCurrencyTotal
Decimal

The total price of the ordered products in the
currency selected by the customer

OrderItemDiscount
Decimal

The discount per unit for this order line in the store
currency

OrderItemCustomerCurrencyDiscount
Decimal

The discount per unit for this order line in the
currency selected by the customer

OrderItemProductCode
String

The code of the product

OrderItemProductName
String

The name of the product

OrderItemCategoryName
String

The name of the product category

OrderItemBundledItems
scSoapApiOrderItem[]

If the ordered product is a bundle, its associated
order item will contain sub-items linking to the sub-
products of the bundle

OrderItemOptions
scSoapApiOrderItemOption[]

The global options selected by the customer

Summer Cart Synchronization Guide

Page 41 of 45

OrderItemLocalOptions
scSoapApiOrderItemLocalOption[]

The local options specified by the customers

OrderItemCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 42 of 45

Order Total Lines

Lines of text displayed at the end of an order that would typically contain total amounts and

other summaries.

Class scSoapApiOrderTotalLine

Property Description

OrderTotalLineId
Nullable Int

The ID of the order total line in Summer Cart

OrderTotalLineType
Int

The type of total line

OrderTotalLineName
String

The text displayed on the total line

OrderTotalLineAmount
Decimal

The amount of the total line

OrderTotalLineCustomerCurrencyAmount
Decimal

The amount of the total line in the currency
selected by the customer

OrderTotalLineSort
Int

Sort index

OrderTotalCustomData
String

Optional custom data

Summer Cart Synchronization Guide

Page 43 of 45

Best Practices
Please consider the following best practices when your build your Summer Cart synchronization

application:

 Validate your data before sending it to the service. At database level, use unique

primary keys and foreign keys to assure referential integrity. Failing to provide the

service with valid primary keys and foreign keys will result in sometimes obscure error

messages. It will be much easier to prevent incorrect data to reach the service than

analyzing verbose log files to figure out what is wrong.

 Use sync transactions if you have more than few thousand items to synchronize with

your system. This will result in much lower server load and minimal impact on server

performance during synchronization. Alternatively, you can increase the PHP script

memory and message size limits on your server.

 Split your modify request in chunks if you are modifying more than few thousand items.

The effect is the same as when using sync transactions – lower server load and better

response time during synchronization. The recommended chunk size is around 1000

items. If the chunk size is too big you may get error messages stating the max script or

message size quota was reached and your service operation will be aborted.

Summer Cart Synchronization Guide

Page 44 of 45

How Do I...

Create an API account in Summer Cart?

1. Open your Summer Cart Admin panel.

2. Navigate to the bottom of the page and click API Accounts

3. Add a new API account (see next page for screenshot). For each data type that can be

synchronized, you can specify if the API account has access to the get(), getSync() and

modify() methods of the service in regards to this data type.

Summer Cart Synchronization Guide

Page 45 of 45

